Les Paysages Fractals

Cédric BONHOMME

Université Paul-Verlaine de Metz

25 mai 2008

Avec: Jean-Charles Bettinger

Encadré par : M. Dominique MICHEL

Plan

- Généralités
 - Caractéristiques des fractales
 - Dimension topologique
 - Dimension de Hausdorff-Besicovitch
- Paysages fractals
 - Techniques de générations
 - Iterated Fonction System
 - Plaquage de texture
 - Techniques basées sur un modèle d'érosion
 - Déplacement du point médian
 - Mesure de dimension fractale
 - Calcul du périmètre et de l'aire du flocon de Von Koch
 - Calcul de la dimension fractale d'un relief
- Conclusion

- Généralités
 - Caractéristiques des fractales
 - Dimension topologique
 - Dimension de Hausdorff-Besicovitch
- Paysages fractals
 - Techniques de générations
 - Iterated Fonction System
 - Plaquage de texture
 - Techniques basées sur un modèle d'érosion
 - Déplacement du point médian
 - Mesure de dimension fractale
 - Calcul du périmètre et de l'aire du flocon de Von Koch
 - Calcul de la dimension fractale d'un relief
- 3 Conclusion

Généralités Caractéristiques

- détails similaires à des échelles différentes;
- trop irrégulier pour être décrit efficacement en termes géométriques traditionnels;
- exactement ou statistiquement autosimilaire, c'est-à-dire que le tout est semblable à une de ses parties;
- dimension de Hausdorff-Besicovitch strictement supérieure à sa dimension topologique.

Généralités

Trois grandes catégories de fractales

- systèmes de fonctions itérées. Par exemple les IFS (Iterated Fonction System);
- les fractales statistiques, définies par une fonction de récurrence.
 Par exemple la fractale de Mandelbrot;
- les fractales stochastiques, aléatoires.

Autosimiliraté

Autosimilarité

Un objet autosimilaire est un objet qui conserve sa forme, quelle que soit l'échelle à laquelle on l'observe.

Dimension topologique

- dimension topologique: 1;
- à chaque itération la courbe augmente d'un facteur de 4/3;

•
$$\Rightarrow A = 1 + (4/9) + (4/9)^2 + (4/9)^3 + \dots$$

Dimension de Hausdorff-Besicovitch

- limites pour des objets classiques :
 - $I(C) = \lim_{u \to 0} N(u) * u;$
 - $A(O) = \lim_{u \to 0} N(u) * u^2$;
 - $V(O) = \lim_{u \to 0} N(u) * u^3$;
 - en général : $m(O) = \lim_{u \to 0} N(u) * u^d$, $d \in \{1, 2, 3\}$;
 - où d est un entier!

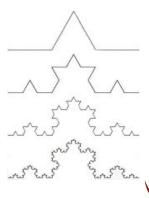
Dimension de Hausdorff-Besicovitch

- pour des objets fractals :
 - d est un réel!
 - d caractérise le degré de fractalité;
 - d est appelé la dimension de Hausdorff-Besicovitch;
 - comment la calculer?
 - $d = \frac{log(N)}{log(1/r)}$ où :
 - r est le rapport d'homothétie ;
 - N est le nombre d'éléments crées par l'opération homothétie.

Dimension de Hausdorff-Besicovitch

Exemple avec la courbe de Von Koch

n	и	N(u)	u * N(u)	u^2	$N(u)*u^2$
0	1	1	1	1	1
1	1/2	4	4/3	<u>1</u> 9	$\frac{4}{9}$
2	1319	16	3 16 9	<u>1</u> 81	9 <u>16</u> 81
:					
n	$\frac{1}{3^n}$	4 ⁿ	$\frac{4}{3}^n$	$\frac{1}{3^{2n}}$	$\frac{4^{n}}{3^{2n}}$



Dimension de Hausdorff-Besicovitch

•
$$I(o_n) = \left(\frac{4}{3}\right)^n \stackrel{n \to +\infty}{\longrightarrow} +\infty$$

•
$$A(o_n) = \left(\frac{4}{9}\right)^n \stackrel{n \to +\infty}{\longrightarrow} 0$$

•
$$m(o_n) = \lim_{n \to +\infty} 4^n * \left(\frac{1}{3^n}\right)^d = \lim_{n \to +\infty} \left(\frac{4}{3^d}\right)^n, d \in \mathbb{R}$$

$$d = \frac{\ln(4)}{\ln(3)} = 1,26$$

Le quart de l'objet est identique à l'objet initial, à une dilatation d'un facteur 3.

Dimension de Hausdorff-Besicovitch

Démonstration

On a:
$$m(o_n) = \lim_{n \to +\infty} 4^n * \left(\frac{1}{3^n}\right)^d = \lim_{n \to +\infty} \left(\frac{1}{3^d}\right)^n \ , d \in \mathbb{R}.$$

On veut
$$\frac{4}{3^d} = 1$$
:

$$4 = 3d$$

$$ln(4) = d * ln(3)$$

$$d = \frac{ln(4)}{ln(3)}$$

Dimension de Hausdorff-Besicovitch

Démonstration

Nous avons la relation : $1 = \lim_{u \to 0} N(u) * u^d, d \in \mathbb{R}$.

$$\begin{array}{lll} ln(1) & = & \lim_{u \to 0} (ln(N(u)) * u^d) \\ 0 & = & \lim_{u \to 0} (ln(N(u)) + ln(u^d)) \\ 0 & = & \lim_{u \to 0} ln(N(u)) + d * ln(u) \\ \Rightarrow 0 & = & ln(N(u)) + d * ln(u) \\ d * ln(u) & = & -ln(N(u)) \\ d & = & -\frac{N(u)}{ln(u)} \\ d & = & \frac{ln(\frac{1}{N(u)})}{ln(u)} \end{array}$$

Dimension de Hausdorff-Besicovitch

Finalement:

- dimension topologique : dimension traditionelle à valeur entière ;
- dimension fractale : à valeur entière, métrique.

- Généralités
 - Caractéristiques des fractales
 - Dimension topologique
 - Dimension de Hausdorff-Besicovitch
- Paysages fractals
 - Techniques de générations
 - Iterated Fonction System
 - Plaquage de texture
 - Techniques basées sur un modèle d'érosion
 - Déplacement du point médian
 - Mesure de dimension fractale
 - Calcul du périmètre et de l'aire du flocon de Von Koch
 - Calcul de la dimension fractale d'un relief
- 3 Conclusion

- utilisé pour représenter les végétaux et nuages;
- pas utile que pour les fractales;
- théorie dévéloppée en 1981 par John Hutchinson;
- technique purement mathématique;
- une IFS est un ensemble de *n* fonctions contractantes.

Fonction contractante

On appelle "contractante" une fonction affine f telle que la distance d entre deux points p1 et p2 est plus grande que la distance entre f(p1) et f(p2).

Définition mathématique de la transformation :

$$W(B) = \bigcup_{n=1}^{N} W_n(B)$$

- $\{W_n, 1 \le n \le N\}$ est l'ensemble des fonctions affines ;
- des probabilités sont associées aux fonctions;
- avec le théorème du point fixe on a l'existence et l'unicité de l'attracteur.
 - ⇒ cela en fait des fractales, aléatoires.

- les fonctions affines définissent donc les transformations (homothétie, translation, rotation);
- de manière itérative les fonctions calculent les nouveaux coordonnées du point précédent;
- les fonctions sont définies de cette manière :

$$ax + by + e = x_1$$

$$cx + dy + f = y_1$$

$$W_i(X) = W_i(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

•
$$a = R * cos(\alpha)$$
:

•
$$b = -R' * sin(\alpha')$$
:

•
$$c = R * sin(\alpha)$$
;

•
$$d = R' * cos(\alpha')$$
;

•
$$e = x_1 - x$$
;

•
$$f = y_1 - y$$
.

a, b, c et d sont les cœfficients des équations.

e et f sont des termes constants. Ils constituent en fait le vecteur de déplacement.

où:

- R est une réduction sur l'axe des X;
- α rotation d'angle sur l'axe de X dans le sens trigonométrique ;
- R' est une réduction sur l'axe des Y (en général R = R');
- α' rotation d'angle sur l'axe de Y (en général $\alpha = \alpha'$);
- e est une translation sur l'axe des X;
- f est une translation sur l'axe des Y.

- les cœfficients a, b, c, d, e et f avec une probabilité p définissent la fractale IFS.
- la somme des probabilités doit être égale à 1;
- on dit que la probabilité p est la fréquence d'appel d'une transformation.

Algorithme général

```
Definir la position initiale Z au hasard Allumer pixel en position Z Pour i de 1 a n Choisir au hasard une fonction affine f Z <- f(Z) Allumer pixel en position Z Fin pour
```


Triangle de Sierpinski

а	b	С	d	e	f	р
0.5	0	0	0.5	0	0	0.333
0.5	0	0	0.5	1	0	0.333
0.5	0	0	0.5	0.5	0.8660254	0.334

- trois homothéties de rapport ¹/₂;
- le terme 0.8660254 est le sinus de 60 °;
- la dernière probabilité a été arrondie à 0.334 afin que le total soit égal à 1.

Iterated Fonction System (IFS) Fougère de Barnsley

а	b	С	d	e	f	p
0	0	0	0.16	0	0	0.01
0.85	0.04	-0.04	0.85	0	1.6	0.85
0.2	-0.26	0.23	0.22	0	1.6	0.07
-0.15	0.28	0.26	0.24	0	0.44	0.07

- la première ligne représente le bas de la tige avec une probabilité de 1%;
- la deuxième représente le reste de la tige avec une probabilité de 85%;
- les deux dernières les feuilles.

Plaquage de texture

- puissante méthode;
- mais non fractale :
 - ⇒ pas un réel mécanisme de génération stochastique ou même statistique.
- paysage dessiné via des objets mathématiques statiques;
- surface des objets revêtues d'images ;
- Gardner [Gar84] modélise un paysage composé (relief, arbres, nuages) par un ensemble de surfaces quadriques 3*D*.

Techniques basées sur un modèle d'érosion

- on simule l'érosion du relief;
- utilisation de lois physiques rendant compte les conséquences du changement du relief;
- deux méthodes :
 - statique;
 - dynamique.

Techniques basées sur un modèle d'érosion Méthode statique

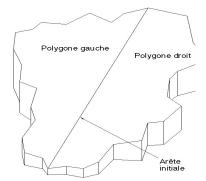
Principe:

- on part d'une arête initiale;
- puis on génère un arbre binaire par ajouts récursifs d'arêtes (affluents);
- pour chaque nouveau nœud :
 - ajout d'un nœud de jonction avec le segment père;
 - ajout d'un nœud à l'extrémité du nouveau segment.

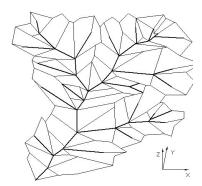
Techniques basées sur un modèle d'érosion

Méthode statique - Exemple

Au départ :



Après itérations :



Techniques basées sur un modèle d'érosion Méthode dynamique

Principe:

- ici les processus mettent en œuvre des déplacements de matière ;
- à chaque étape les points du maillage subissent une baisse d'altitude;
- certain nombre de lois prises en comptes :
 - loi gravitaire;
 - loi mécanique;
 - loi chimique;
 - loi sédimentaire.

Déplacement du point médian

Principe:

- une surface plane est découpée en plusieurs parties;
- un déplacement vertical aléatoire est appliqué au centre de chaque parties;
- on réitère le processus sur chaque nouvelles parties crées.

Avantage:

méthode simple à comprendre.

Inconvénient :

 les reliefs peuvent présenter des artéfacts sous forme de discontinuités peu vraisemblables.

Solution:

 utilisation d'une fonction décrivant un mouvement brownien fractionnaire.

Déplacement du point médian

Mouvement brownien

Mouvement brownien

Fonction dont la variance entre l'instant t_1 et t_2 est proportionnelle à la différence entre t_1 et t_2 .

Mathématiquement :

$$\langle |V_H(t_1) - V_H(t_2)|^2 \rangle = \alpha |t_2 - t_1|^{2H}$$

Déplacement du point médian

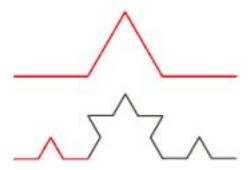
Mouvement brownien

dans la formule précédente :

- α le cœfficient de proportionnalité est un scalaire ;
- V_H est une fonction de x définie par :
 - $V_H(0) = 0$;
 - $\langle |V_H(t+1) V_H(t)|^2 \rangle = \alpha^2.$

Le flocon de Von Koch ...

Dimension fractale :
$$d = \frac{ln(4)}{ln(3)} = 1,26$$
 (rappel)



Périmètre du flocon de Von Koch

soit:

- $c_{n+1} = 4c_n = c_0 * 4^{n+1} = 3 * 4^{n+1}$ le nombre de côté à l'étape n;
- $I_{n+1} = \frac{I_n}{3} = \frac{I_0*1}{3^{n+1}} = \frac{1}{3^{n+1}}$ la longueur d'un coté du flocon à l'étape n+1

donc:

- $p_n = c_n * l_n = 3 * (\frac{4}{3})^n$ est le périmètre à l'étape n;
 - donc : $\lim_{n\to+\infty} p_n = +\infty$

Aire du flocon de Von Koch

soit:

- c_{n-1} le nombre de nouveaux triangles créés à l'étape n;
- $a_n = a_{n-1} + c_{n-1} * l_n * \frac{\sqrt{3}}{4} = a_{n-1} + 3 * (\frac{4}{9})^n * \frac{\sqrt{3}}{16}$ est alors l'aire du flocon à l'étape n.

et:

•
$$a_n = a_0 + \frac{3*\sqrt{3}}{16} * \sum_{k=1}^{n} (\frac{4}{9})^k = \frac{\sqrt{3}}{4} + \frac{3*\sqrt{3}}{16} * \frac{4}{9} * \frac{1 - (\frac{4}{9})^n}{1 - \frac{4}{9}}$$

d'où l'aire du flocon :

$$\lim_{n \to +\infty} a_n = \frac{\sqrt{3}}{4} + \frac{3*\sqrt{3}}{16} * \frac{4}{9} * \frac{9}{5}$$

$$= \frac{\sqrt{3}}{4} + \frac{12*\sqrt{3}}{80}$$

$$= \frac{20*\sqrt{3}}{80} + \frac{12*\sqrt{3}}{80}$$

$$= \frac{32*\sqrt{3}}{80}$$

$$= \frac{2*\sqrt{3}}{5}$$

Dimension fractale du choux de Romanesco

- supposons que chaque division engendre 10 à 15 banches;
- prenons le maximum, donc 15;
- et un facteur de réduction de 3;

on a:

•
$$d = \frac{\ln(\frac{15}{1})}{\ln(\frac{1}{3})} = \frac{\ln(15)}{\ln(3)} = 2,46$$

Rappel de formule

$$d=\frac{\ln(\frac{n}{n_i})}{\ln(\frac{1}{r})}$$
 où :

- n est le nombre de branches obtenues après l'itération;
- n_i est le nombre de branches initiales (1);
- r est la réduction.

Conclusion

- nombreuses techniques de générations de fractales;
- les fractales stochastiques constituent un bon moyen de génération de paysages;
- une des meilleures méthodes : point médian aléatoire ;
- les IFS sont un excellent moyen de générations des végétaux et de nuages.

Conclusion

Qualités des fractales :

- réalisme remarquable;
- très importante amplification des données;
- niveau de détail aussi fin que voulu.

Les techniques les plus abouties demandent encore une puissance de calcul considérable.

Bibliographie

Frantsia And Chana

Fractals And Chaos.

Institue of Physics Publishing, London, 1997.

Geoffrey Y. Gardner.

Simulation of Natural Scenes Using Textured Quadric Surfaces.

18(3):11-20, July 1984.

Aristid LindenMayer.

The Alogirthmic Beauty of Plants.

Springer-Verlag, 1990.

Bernard Sapoval.

Universalités et fractales.

Flammarion, 2000.

